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Abstract. We introduce a model system of stochastic entities, called rowers which include some essentials
of the behavior of real cilia. We introduce and discuss the problem of symmetry breaking for these objects
and its connection with the onset of macroscopic, directed flow in the fluid. We perform a mean field-like
calculation showing that hydrodynamic interaction may provide for the symmetry breaking mechanism
and the onset of fluid flow. Finally, we discuss the problem of the metachronal wave in a stochastic context
through an analytical calculation based on a path integral representation of our model equation.

PACS. 05.65.+b Self-organized systems — 64.60.Cn Order-disorder transformations; statistical mechanics
of model systems — 87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies

1 Introduction and overview

We set up a model system of entities, called rowers, that
may organize spontaneously breaking left-right symmetry
of the motion and give rise to an ordered macroscopic
flow and beating patterns. Rowers are active, stochastic
elements that “live” in a fluid with low Reynolds number
and are capable to exert influence on each other by means
of hydrodynamic coupling.

The motivation for this analysis comes from the mo-
tion of cilia, long and thin extroflections of the eucary-
otic cell membrane that are able to generate motion [1,2].
The cilia are used by the cell for self-propulsion or to stir
the surrounding fluid. A cilium has an internal structure
(the axoneme) containing an arrangement of microtubule
doublets attached to a basal body anchored to the cell
membrane. A complex, symmetric net of protein bridges
and links among the doublets gives the whole structure
elastic properties. Biochemical reactions at the level of
such proteins represent the energy source for the ciliary
motion, a cyclic beating composed of two phases: the ef-
fective stroke — which is active in propulsion or in fluid
transport — and the recovery stroke, which is passive. A
ciliated cell generally has a field of hundreds of cilia which
beat in a coordinated manner, setting up wave-like time
dependent patterns. This phenomenon is referred to as
metachronism.

In the framework of a purely mechanical description,
the physics of ciliary motion involves the balance of hy-
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drodynamic and elasticity; the forced nature of the sys-
tem is modeled through the elastic constitutive equations,
which contain the engine supplying energy in a determin-
istic way.

In this paper we adopt a stochastic approach to cil-
iary motion and its associated macroscopic fluid flux. We
analyze some physical assumptions which are required as
necessary conditions for the existence of a macroscopic net
flow in the surrounding fluid and for the onset of coordi-
nation, or metachronism.

Our spirit is to approach the system from the point of
view of Statistical Mechanics, looking at macroscopic ef-
fects and keeping as few as possible the number of relevant
variables. As our model is designed to be studied as much
as possible with analytical tools, we do not model in de-
tail the internal features of the single object- the rower —
which inherits from the real cilium the only peculiarity
of undergoing a two-phase motion. We consider hydrody-
namic interaction and energy supply, which is switched
on and off at times controlled by a stochastic process, and
possibly correlated to the configuration of the object.

We think that some of the questions pointed out in this
study, may be of general interest — independently of the
problem of ciliary motion — for the Statistical Mechanics
in far from equilibrium systems.

Looking at the literature about cilia and flagella in
a viscous fluid one realizes that such studies are mainly
mechanics—oriented, the stochastic aspects of the phenom-
ena being, in general, disregarded.

Early works on these subjects date since 1955 with
the early model by Gray and Hancock (one cilium in a
fluid) [3] and with the study by Machin (1963 — locally
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contractile flagellum) [4]. Later, mathematical mod-
els for simulating the motion of cilium (and flagellum)
have been developed, we refer to the works by Brokaw
et al. [5-9], (curvature controlled models) and by Murase
et al. [10-13] (excitable dynein models and directional
mechano-sensitivity of cilium as a possible mechanism for
the onset of metachronal waves wvia hydrodynamic inter-
action [12]).

The description of metachronism, was addressed to
model multicilia dynamical configurations in a suitable
way to generate Stokes flow in the surrounding fluid (Liron
et al. [14-16]); the problem of fluid transport was investi-
gated for different geometries of fluid confinement [17-21].
In 1984 Liron in his work [22], based on the discrete cilia
approach [20], described fluid transport by cilia, assuming
metachronal coordination between ciliary moves (propa-
gating wave) and periodicity conditions.

More recently, Gueron et al. proposed a model
which accounts for multicilia hydrodynamical interac-
tions [23-26] and energetics [27]. The dependence of the
metachronal wave on observable ciliary parameters [28] —
and the effect of varying fluid viscosity [29] have been stud-
ied by Priel et al. They also proposed a model involving
hydrodynamically coupled oscillators [30-32].

In building up the model, we represent the system in
terms of two-phase hydrodynamically coupled oscillators.
The nonequilibrium drive (active motion) is realized as
stochastic transitions between two internal states, acting
together with Gaussian thermal fluctuations.

In this paper we are interested in focusing two crucial
problems. The first is symmetry breaking.

If the internal (mechanical) engine which generates
motion is removed the cilium is free of moving in a cone
with cylindrical symmetry, O(2) in 3D with fixed basis.
However, cilia and flagella are observed to perform pla-
nar motion. In the case of sea-urchin sperm cell flag-
ella the plane of motion can be imposed by external
perturbations [33].

The internal couple of microtubules in the axoneme
may give an explanation to the breaking of the O(2) sym-
metry.

The problem whether, once moving in a plane, there
is any preference for right or left-directed effective stroke
is, to our knowledge, open. It is invaluable by purely
anatomic reasons of the individual, that is, there is no
structural symmetry breaking. Flagella, for example, are
observed to beat symmetrically.

In paramecia this left right symmetry is broken in
connection with an intrinsically oriented structure of the
whole cell cortex (the so-called kineties), which is absent
in ciliated epithelial cells [34].

Therefore real cilia need a symmetry-breaking mecha-
nism to push the fluid in a directed way. This could be due
to regulatory processes that establish a cortical anisotropy
followed by the cilia. With our simplified model we show
that hydrodynamic interactions in collective motions of
rowers could be enough to realize this symmetry break-
ing. This situation is interesting from the point of view
of statistical mechanics, because a local, a priori isotropic

release of energy is transformed in a self organized way
in a macroscopically relevant collective state with a well-
defined directionality (see also [35]).

The second problem is the physical source of metachro-
nism. With our model we show that metachronism is not
a wave phenomenon of the traditional kind, but, instead,
a phenomenon of statistical nature. In fact, it can not be
sustained by oscillations around the ground state of the
system in thermodynamical equilibrium, but it is more un-
derstandable as a time-dependent pattern created by the
counteracting active beating and dissipative processes.

In Section 2 we present the general features of the
model. The elementary component is a rather abstract
object (the rower). It includes a few observed features of
real cilia, mainly the distinction between effective stroke
and recovery stroke. Our rowers are one dimensional but
not intrinsically oriented, that is, they have left-right sym-
metry. The observed two-phase beating is represented as
the motion of a particle in two different potentials — ac-
tive and passive — alternatively switched on and off by
a two-state stochastic process. These potentials are ana-
logues of states of a filament in which the collective action
of the dyneins determines two different minimum energy
curvatures.

In Section 3 we show how to compute averaged quan-
tities for the single rower, of which the most interesting is
the current that it generates as a function of the external
velocity of the fluid.

We then use this result, together with known tech-
niques of fluid mechanics, to compute the self-consistent
velocity field in a low Reynolds number Stokes fluid with
an array of rowers as velocity sources. This can be taken as
a demonstration that cooperative effects arising from the
hydrodynamic interaction may make our stochastic rowers
spontaneously break symmetry and set up a macroscopic
flux. This result is obtained in a mean-field like picture,
and is independent of a more-refined investigation on the
collective motion of rowers.

In the last section, we discuss the premises for the
onset of metachronal waves, defined as spatio-temporal
anisotropic ground states of the system. Pointed out the
role of hydrodynamic interactions in models that include
thermal noise, we proceed employing a path integral rep-
resentation of our model equations to obtain information
on the most probable history (path in the configurational
space) and first excitations.

We analyze in more detail the case in which any feed-
back mechanism of position and internal state is avoided.
The cyclic nature of ciliary motion (i.e. the fact that
its intrinsic time scale is larger than relaxation times) is
taken explicitly into account. We prove that the onset of
metachronal waves is compatible with such a system, but
it is frustrated by the presence of random solutions with
the same statistical weight.

This means that, if there is no exchange of signals be-
tween cilia, (nether chemical nor mechanical) the onset
of metachronism due to hydrodynamic interaction is not
relevant. However, a nearest neighbor coupling between
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the internal state of the rowers is enough to stabilize this
wave-like solution.

We also argue that if the transition probabilities be-
tween states are coupled with the configuration of the
rower — the coupling may be realized for example as a
stochastic version of the “geometric switch” introduced
by Gueron et al. [36] — the problem of metachronism be-
comes formally analogous to the problem of modulated
phases in membranes with defects [37].

2 The rower

A rower is the elementary tile of our model, and is designed
to contain some of the essentials of the cilium.

Our starting point is the observation that a single cil-
ium beat pattern can be divided into two phases [2]. Dur-
ing the effective stroke it moves almost as a straight rod,
transversally to the fluid, while during the recovery stroke
it glides back softly, in a tangential motion. Thus the ef-
fective stroke is associated with high viscous load and ac-
tually propels the fluid, whereas the recovery stroke brings
back the cilium to its equilibrium position minimizing the
viscous resistance.

A rower is characterized by two degrees of freedom, a
continuous one corresponding to its position (the cilium
center of mass, for example), and a discrete one corre-
sponding to its internal state. The rower is alternatively
subject to two different potentials and viscous loads, with
different hydrodynamical characterization. In state 1 (re-
covery stroke) the viscous coefficient is low and the particle
“sees” a concave potential V7, while in state 2 (effective
stroke) the viscous coefficient is high and the potential
V5 looks like a mexican hat. The transitions between the
two states are stochastic. The switching between two po-
tentials makes our rower an active element, and is the
analogue of the active component of the force in the me-
chanical models of the cilium. The two different viscous
loads mimic the behavior of a slender body moving trans-
versely or tangentially in the fluid.

We consider a one-dimensional rower, that is, the rower
breaks rotational but not left-right symmetry. This is dif-
ferent from most models of ciliary activity found in the
literature, which treat cilia as structurally asymmetric ob-
jects. In both states one has to take into account the ex-
ternal drive due to the velocity of the fluid. At one-body
level, the velocity of the external fluid enters as a linear
bias the active and passive potentials; with such a bias the
left-right symmetry will be broken.

Making the additional hypothesis that we are in
the overdamped regime (low Reynolds number) [38], we
can use the following Langevin equation to describe the
dynamics of each rower (see [39] for a similar equation in
a different context)

1 0V, (x)

x:v—ﬂya o + & (1)

where o(t) may take values in {—1, 1} and is the stochastic
process describing the switching between phases.

The simplest choice for this noise is a random tele-
graph process, with Poisson distributed jumps. Alterna-
tively, one could allow the transitions between the two
states to depend on the configuration of the rower. For
example one could require the transition probability to
increase at the two ends of the rowing oscillations, with
a mechanism which is the analogue for our rower of the
“geometric switch” introduced in [36].

We will stick for simplicity of exposition to the first
case throughout this section and the next, as the results
do not change in substance from the point of view of a
“mean field”-like description. In Section 4 we will distin-
guish between the two mechanisms.

In equation (1) &, is a Gaussian white noise with zero
average and correlation

2T
—9
(e

(6o (t)&o (1)) = 5 (t—t).

In the same equation v is the component of the sur-
rounding fluid velocity along the direction of our one-
dimensional rower.

In the dynamics described by equation (1) we have
eliminated two “fast” modes with characteristic times
Tho = %, where m is the mass of the particle. Thus,
we are left with the “slow” modes with relaxation times
To o ;’—Z, where K, is the curvature of potential V, at
its minimum(s). In order for the model to represent effec-
tively the movement of a rower, the average time between
two stochastic transitions must be greater than the char-
acteristic times 7_ ,. This implies in the first place that
the system has to be far from criticality (see [40]).

Of course our rowers overlook many details of the
mechanism of contraction of real cilia. In the first place
they are not filaments but “points”. On the other hand
we do not want to focus on the detailed modeling of real
cilia but instead on the organization through hydrody-
namic coupling, and they are designed to this aim. In fact,
the statistical mechanics of an internally driven filament
is quite a difficult subject (one object has infinitely many
degrees of freedom), while our rowers turn out to be much
milder.

3 Symmetry breaking and onset

of macroscopic flux

3.1 Single rower

It is convenient to pass from equation 1 to the Fokker-
Planck description, that deals with the distribution
functions P,(xz,t) for the probability to find the rower

with position = at time ¢ in state o. These distributions
obey the equations

o Py (I,t) = —ale(l‘,t) — wlPl(x,t) + wQPQ(.Z‘,t)

atPQ (:L'a t) = *azJQ(xv t) + WIPI (LL', t) - WZPZ(Q:? t)
(2)
with probability currents

R
Yo Ox

T 0P,

Js =vP, - ——
! Yo Ox
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Fig. 1. Model potentials with incorporated external fluid ve-
2 _ vz ; for the active

locity. For the passive phase Vi(z) = Sz
phase V2 (z) = 22%(2* —2§) — vz. Here rescaled parameters are
plotted a = 1.2;b = 0.8;z0 = 3.7;v = 1.5;v1 = 1.0;v2 = 1.5.
Piece-wise linear potentials are also drawn. Realistic parame-
ters are: o ~ Sum;v ~ 1075 to 1074um/s ;72 =~ 1.5y, v~
1073N s/m;a ~ 1075 N/m.

where w,, is the probability of transition from the state la-
beled by o to the other (these quantities would depend on
x if one chooses a configuration-dependent case). Typical
values for these quantities are around 60 s™!.

The motion of the rower looks like an oscillation be-
tween the bottoms of the two potentials, and each phase
of the cycle has a mean duration of 7 = w;” L

Equations (1, 2) resemble formally those of a two-state
thermal ratchet model (e.g. [39]). Actually, in our model
the physical situation is quite different. In fact, if we con-
sider the stationary Fokker-Planck equation for the sum
of probability currents Jiot = J1 + Ja, because of the ab-
sence of periodic boundary condition, 0, Jios = 0 implies
that Jiyot is zero. That is, a global flow of probability is
not possible: the rower can’t just run away.

One should not worry about the fact that the overall
net current is zero, because the two strokes of the rower
produce much different perturbations in the surrounding
fluid, thanks to the differences in viscosity. The problem
becomes then if the two probability currents J;(z), which
have opposite sign, are nonzero.

Let us compute the mean stationary value of the veloc-
ity during the effective stroke. We can write the average
active current as

I=L=-1 (3)

with

With a little manipulation of equation (2) it is easy to ob-
tain a third order differential equation for Py (or P») that,
once solved, allows to compute explicitly the above aver-
ages. We have been able to solve analytically this equation
by transfer matrix method in the case of piece-wise linear
potentials (Fig. 1). For more general cases, typically that
of a quadric V; and a quartic Va (Fig. 1), we have resorted

25 T T

Fig. 2. Active current I(v) as a function of the surrounding
fluid velocity from calculation with the potentials of Figure 1
(points with dotted line for piece-wise linear potential).

to solve numerically equation (2) and look at its long-time
behavior.

From simulations and calculations it’s clear that, when
v =0, 1 = Iz = 0 and there is no biased pumping. For v #
0 instead the average currents are finite and sustain fluid
flow. In Figure 2 we show the computed average active
current I(v) as a function of the surrounding fluid velocity;
and it is nonzero for v # 0 — negative values for I(v) are
just an artifact, because by increasing v the minimum of
V1 passes the right minimum of V5.

We now give a heuristic argument that, for low tem-
perature and driving velocity, justifies this behavior. In
these conditions, the process is well approximated by a
sequence of jumps between the minimums of the two po-
tentials. These jumps are unbiased as long as there is no
driving velocity, since the left-right symmetry is not bro-
ken. The presence of the linear term induces a bias in the
jump probability, so that from the minimum z,,(v) of V3
(Fig. 1) the rower has a probability of 1/2 + 7(v) to fall
into x4 and 1/2 — w(v) to fall into z_. Thus we can esti-

QWTE“), where p is the period

mate the average current as
of the rowing cycle.

If we make the further assumption that in the recovery
phase the probability distribution for the position of the
rower relaxes to a Gaussian centered in x,,(v), with width

%, it is easy to see that

% +7(v) = \/gerf(xm(’u) —xp(v))

which, substituting, gives the same qualitative behavior
for the average current as that shown in Figure 2.

Thus, for nonzero external velocity field v, I(v) # 0,
and the rower breaks left-right symmetry. In this situation,
the average excess Stokes force exerted by the rower on the
surrounding fluid, is

Fs = (v2 —1)I(v)

and there is biased pumping of the fluid as long as the
two viscosities are different. In the above expression, the
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information on the transition times is contained in I. The
dependence of the force on the fluid velocity is reminiscent
of the mechano-sensitivity found by Murase in [12].

3.2 Array of rowers

In the case of a planar array of N interacting rowers beat-
ing in the same direction and arranged on a lattice (which
can also be random), we have N equations that look like
equation (1), but the surrounding fluid velocity term v
has to be substituted by the contribution of all the other
rowers through hydrodynamic interactions. That is, we
have a sum of all the other particles velocities to which
we apply the mobility matrix, which we take as H;; = 1,
Hry = H(rr;), where H(r) = Swlm (1 + #t) is the Oseen
tensor, which has a dependence on the inverse distance
(see [41] p.68). Then we write (I and J label lattice sites

and d is the unit vector directed along the rower’s motion):

vy = Zﬁu K-%{;CB‘]) +€aJ> 61]

J£I

and the analogous of equation (1) is:

. N 1 8V(01, I])
Tr=vy-d Yo |: o1 +§UI:| . (4)
The problem is hard to tackle analytically as is, be-
cause it is a selfconsistency problem in which the instan-
taneous configuration of the rowers affects the Stokes field,
which in turn enters the equation of a single rower as the
(local) velocity of the surrounding fluid. Nevertheless, a
mean field calculation is fairly easy. That is, we examine
if a macroscopically steady constant flow can be sustained
by the beating rowers.
We can write (see [41]) the average velocity field in one
point R of the surrounding fluid as

v(R) =) HR—rs)y(0s) (s, —v).
J

Which, averaged and projected along the direction of beat-
ing, taking into account the average force exerted by the
single rower, gives the self-consistency relation for the con-
stant fluid velocity

H™ (y2 — )
L+ Hm(yg + 7

Vuid = ] I(vauia).

The quantity H'™ is a number that derives from the sum
over the (finite) lattice sites of the Oseen propagators,
and [ is the average active current, as defined in equa-
tion (3). If H'™ is big the equation becomes vauq =

%I (Vuid), Whereas in the limit of small H'™ we get

Vauwid = H™(v2 — 1)1 (vauia). The value of H™ depends
of course on the arrangement of the rowers on the lat-
tice, and can be easily calculated. When the number of
rowers is not finite problems may arise because of the %

v_SC

Fig. 3. Sketch of the selfconsistent velocity calculation o =
L HM (o 471) |
Hnt (yg—v1)

dependence of the Oseen tensor, but this situation is not
realistic for systems of cilia. Following Landau [42], one
could extend the sum over the penetration length of the
hydrodynamic interaction, so that the constant will be a
function of the surface density of rowers.

Then, the velocity field can be either zero, or take the
(positive or negative) selfconsistent value vsc # 0 (Fig. 3).

This means that the system of rowers is able to set up
a macroscopic (and macroscopically steady) flow in the
fluid. As this flow is selfconsistently maintained by the
array of rowers, we can see this process as a spontaneous,
dynamic symmetry breaking.

The question whether this symmetry breaking process
could be relevant for real cilia is beyond the descriptive ca-
pabilities of the model. Nevertheless, we have established
that ideal, minimal, cilia-like object as the rowers that
are not intrinsically oriented, may achieve a directionality
collectively.

4 Metachronal coordination

The mean field approach of the above paragraph prevents
by construction the analysis of wave-like patterns in the
beating of the rowers. It tells us that the fluid is pumped
by the rowers but not if they pump it coordinately.

In this section we want to analyze the possible active
role of hydrodynamic interaction not only in breaking left-
right symmetry but also in creating patterns. Given that
this interaction (alone) is able to generate directed fluid
flux, we are now looking for the premises for spatial co-
ordination. To escape from the mean field description we
turn to a path integral representation of equation (4).

The entity of interest is the effective action for the
configuration variables. It is from the minima and from
the curvature of this action that we expect to get evidence
about the existence of waves (patterns).

In our description we are considering the “ground”
state of the system to undergo continuous changes driven
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by the dynamics of the discrete field o. Thus, in our model
the metachronal wave cannot have the nature of a small
oscillation around an equilibrium state but rather it is a
far-from-equilibrium oscillatory pattern. This implies that
standard techniques relying on conservation laws or sym-
metry breaking (see for example [44]) cannot be employed
to find waves in the form of propagating modes. In this
view, the assumption that the time scales of thermaliza-
tion are fast compared to o is very important in order to
see any kind of oscillation.

In what follows we outline the calculation.

The reduced partition function to the configurational
variables is

Z(J1(t) = <exp lz / dtJI(t)x[(t)D
I &0

The two averaging steps involved are integration on ther-
mal noise £ and on the noise o. Integration on thermal
noise is straightforward (see [43]).

The second integration is a much more delicate step.
First, o is not only an additive noise, but it has a multi-
plicative role too, second ¢ has to be described on greater
time scales than the thermalization times.

It is convenient to rewrite the mobility matrix as

Lyy=Hr;+nordry

— where the dependence on ¢ has been isolated and Hy s
has the same off-diagonal terms as the Oseen tensor —
and to approximate the inversion of L up to first or-
der in 7. We choose for simplicity to have the potentials
Vor = %a(mz — 07)?, so that the symmetry breaking is
assumed and the two wells are quadratic with the same
stiffness a. This choice allows us to analyze the existence
problem of the metachronal wave using straightforward
algebra. (Keeping into account more general potentials in-
volves non-linearities which, however, do not affect space-
time derivatives and consequently do not change our anal-
ysis about the metachronal wave.)
Integration on thermal noise is carried on with

Er®) =0 ;5 (&O& () = Lot 1)
and gives an effective dynamical action depending on the
fields x and o:

S = /dt(ﬁm +Lso+ Lo)
where £, depends only on the configurations, £, involves

the field o, and £, , is an interaction term.
We find

Ez = Z:L'[
2ZUIHUUJ +na ZUI

Loo = 20201 (9'31 + GZHIJ!EJ>
7 7

+7)Za[ a:nI ZHIP:EPHPQQSQ
PQ

(~02 + a®H?)], w5 + 2%y 2
I

Let us now consider the integration in o.

We proceed with M.S. technique and consider the func-
tional measure for the integration in o. The fact that such
a noise has a cyclic nature cannot be ignored, so we write
the measure in the form:

dX¥(o)=[do] exp ——Z/dtoj

X(0)rs04(t) ¢ - (5)

We can observe that, in view of this expression and
the above ones, the complete effective kernel for o is
a’H+ . (6)
This quadratic form determines, through its lowest eigen-
value, the most probable configuration around which one
can study the fluctuations. Assuming space-time transla-
tional invariance, the spectrum will depend on a wave-
vector k and a frequency w.

The question whether the hydrodynamic interaction
can give rise to metachronism is then equivalent in this for-
malism to asking whether adding H to X' can change the
minimum eigenvalue of the quadratic form for the field o,
determining a ground state configuration corresponding
to well defined wave-vector k* and frequency w*, both dif-
ferent from zero, that will generate the metachronal wave.

As we do not have a microscopic theory for the in-
ternal engines of the rowers, we have some freedom to
choose the probability measure in formula 5 Y. The case
we would like to investigate first is the one in which o;(t)
are spatially independent random variables. We will find
that even in this case there are wave like solutions, but
they are canceled out by the noise when averaging.

We take a X' which is diagonal in space and has kernel
which is not monotonically increasing in time. This last
requirement is crucial. In fact, with a noise with a mono-
tonically increasing kernel the system should be purely
dissipative. It is easy to prove that the equation for the
classical (most probable) field admits the null-path as
unique solution, with fluctuations exponentially decreas-
ing both in space and time. In the large time limit the
probability distribution becomes

Pstat,hydr ~ 67% 2 932J

so that Hjj; does not intervene in any way in the sta-
tionary probability measure, but it may just modify the
thermalization times. This means that if one models the
energy release with a stochastic “white-like” process,
the hydrodynamic interaction cannot have influence on
the stationary configuration of the system, and cannot set
up any spatial coordination.

Thus, we assume that X' is not monotonically increas-
ing and analyze this case.

Notice that what follows is independent of the specific
choice of the operator X, for example one can write — as
in the Brazovskii model [45] — X = (C? 9} + D? ? + B?).
With this kernel the most favored modulation in time is

= |%| and it can be identified with the transition
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frequency. The fact that this modulation may correspond
to a zero—mode is not a problem with a bounded field.

We proceed summing over o. Since in our case the
zero-mode can not be resolved by exploiting symmetry,
we must assume that the field z;(¢) is limited in width.
The results that we can easily obtain with this assumption
are equivalent to the results of a different, more heavy but
mathematically more careful analysis.

Thus, we look for the classical solution with field x(t)
— the most probable path and first excitation — of the form
z=z"+nz' +---.

It is easy to verify that 20 e z! are solutions of the
equations (from hereafter we will take a = 1):

|0+ 1) | -0 @

1

J IJ
and
ST(-02+ HY) 3], 2k =Y His
K J
- %;(&JFH)IJ [(QSO)QJr (HiliO)Q}Jf... (8)

Considering z° first, the positivity of (—82 + H?) and
the existence of H~1 imply (Eq. (7)) that 20 is a solution
if ¥ 2% = 0. This means that the properties of the in-
ternal state field o are transferred to = trough functional
integration, so that the classical path is random in space.
Moreover, it describes a null velocity for the fluid environ-
ment (from the symmetry of H).

Consider now the first correction in 7. As one can see
by equation (8), 2! has a space-time source. Nevertheless,
like for 20, there is no explicit dependence on spatial vari-
ables. It is relevant that, instead, z' gives a non zero fluid
velocity, that is: the rowers are idoneous to pump fluid,
but again without coordination.

We shall now consider the fluctuations and limit our
study to the quadratic part of the effective action. Our
task is to analyze the paths which correspond to non-zero
eigenvalues A of the operator in equation (7) (which gives
the solution ).

The paths are z;(t) = e '+ with dispersion
relation

2(w)

A= IO rmEm e O

For each A this relation gives a “band” of solutions with
the same statistical weight. Together with the true waves
— the metachronal waves — there is a solution of the same
kind of 2°, namely with spatial randomness. These solu-
tions are obtained, for each A, by considering the limit
k — 0 and recalling that H is essentially the inverse of
the Laplacian — in fact, for & — 0 the operator that we
are considering reduces to X'(w).

This further level of analysis which includes fluctua-
tions confirms the mean field result on the presence of
an effective macroscopic pumping of the fluid by the row-
ers, as an effect which is first order in 7. However, the

hydrodynamic interaction is frustrated in sustaining the
metachronal waves because for every metachronal mode
there is a path, with the same probability, and the same
random nature of the classical solution. Furthermore the
metachronal waves are always depressed with respect to
the classical solution.

In conclusion, without exchange of chemical informa-
tion between rowers, the sole hydrodynamic interaction
does not generate coordination. This is mainly due to the
fact that, going back to equation (6), if X' is diagonal in
space, adding the term H ~ 1/k? does not determine a
modification in the minimum eigenvalue of the spectrum
giving rise to a well-defined mode.

The situation is different if the functional measure
for the field o contains a spatial interaction, which can
be short ranged, between the internal states o7. For ex-
ample, one could consider a nearest neighbor interaction
with coupling constant «, giving rise to a Laplacian on
the lattice. This does not affect the minimum around the
homogeneous configuration in absence of hydrodynamic
interaction.

However, in presence of H, the spectrum becomes

H+ X~ %JraszrZ(w)

and there is a minimum for the particular value |k* =
of the wave vector, together with the usual value w* for
the frequency. Integrating on o and looking for the eigen-
values of the effective quadratic form for = one is forced
to keep this minimum energy “spatio-temporal mode” into
account and obtains wave-like solutions with frequency w*
and wave-vector k*.

This solution can be called metachronal wave accord-
ing to our definition. It is sustained by hydrodynamic in-
teraction, but it needs a preexisting short ranged interac-
tion between the internal states of the rowers to be formed.
This preexisting interaction is unable by itself to set up a
mode.

The physical interpretation for this short ranged cou-
pling could be that one cilium can feel the depletion in
ATP concentration due to the activity of nearby cilia of
the same cell.

In order to obtain metachronism one can also con-
sider an alternative scenario in which the ¢ is dynami-
cally related to the configuration. This scenario includes
as a special case the stochastic analogous of the “geomet-
ric switch” mechanism found in [36] and [27], in which the
transitions between the active and passive phases of the
cilium are determined by its reaching some limit configu-
rations.

If we include a dependence on the configuration in the
dynamical equation for the field o, so that the quanti-
ties w; in equation (2) become necessarily functions of the
space coordinate of the rower. The results of Sections 2
and 3 do not change. On the contrary, the functional in-
tegral study undergoes a dramatic change. Time modu-
lation of ¢ noise need not be required ab initio. In this
case there are two interacting fields, z;(¢) and o;(t), the
functional integral is well defined and a correct perturba-
tive analysis can be carried on. The scenario is formally

=1
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equivalent to the one for modulated phases in membranes
with defects [37]. Dealing with quadratic potentials, for
example, it is possible to integrate out the continuous con-
figurational degrees of freedom — as in [46] — obtaining an
effective model for the field o.

5 Conclusions

We introduced a model system, the rower, which contains
some essentials of the cilium and, being economic in de-
grees of freedom, enables to deal with stochastic features
of this system.

We computed the probability current of one rower in-
teracting with a surrounding fluid in a steady state, and
we used the result to deal with the problem of left-right
symmetry breaking of this entity.

The same expression of the current was then used in
a self-consistent mean field-like calculation for a planar
array of rowers coupled hydrodynamically. The result was
that rowers can cooperate to set up a macroscopic flow in
the fluid.

Finally, we presented the problem of metachronal coor-
dination in terms of correlation between rowers, and dis-
cussed a path-integral calculation that enables to point
out some features that are sufficient for the model to ex-
hibit this behavior.

This kind of calculation can be a useful tool in general
for systems driven far from equilibrium by a stochastic
process that switches the Hamiltonian locally.

The indications that come from the last two calcula-
tions are that

— 1) For our rowers the metachronal wave is not neces-
sary to set up a macroscopic flow in the surrounding
fluid. This is supported by a mean field like analysis
and confirmed when we include fluctuation.

— 2) Without any direct interaction between rowers
the hydrodynamic interaction generates metachronal
waves which are frustrated by the presence of random
fluctuations of the same statistical weight, together
with the random dominant solution.

— 3) A short ranged coupling of internal states (that
could have for example chemical origin), unable by it-
self to set up a mode, can stabilize the wave and make
the pattern formation statistically relevant.

— 4) Alternatively, provided that the only interaction be-
tween rowers is hydrodynamic, a sufficient condition
for the onset of a metachronal wave is the presence of
a coupling between position and transition frequency
of the single rower.

These results are qualitative theoretical predictions.
They have a definite interest from the point of view of the
model, but they need to be examined in greater detail to
fully understand their implications for the real system.
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